

Then, find the distance between each point and each mean

Data	2	3	5	6	11	13	15	25	30
K= 2									
1 st iteration		Mean1 =	4			Man2=	16		
Distance to Mean 1	2	1	1	2	7	9	11	21	26
Distance to Mean 2	14	13	11	10	5	3	1	9	14
CusterNinber									
		C1 total =				C2 total =			
		Cl cart =				C2 cart =			
		Mean1 =				Man2=			
		0							
2	35	6 1	1 13	<u> </u>		25 3	30		-

Use the shortest distance to assign a point to a duster

Update the mean of each duster

The means stay the same at the 3^d iteration

Data	2	3	5	6	10	13	15	25	30
K=2									
3^diteration		Mean1=	54			Mean2=	2075		
Distance to Mean1	2	1	1	2	7	9	11	21	26
Distance to Mean 2	1875	17.75	1575	1475	975	7.75	575	425	925
GusterNinber	a	a	a	a	a	C2	C2	C2	C2
		Cl total =	27			C2total =	83		
		Claart=	5			C2court=	4		
		Mean1=	54			Mean2=	2075		
					Ļ				
2	3 5	6 1	1 13	15		25	30		
~	0 0								

Advanced Questions

Is the eary method to determine the optimal value of k? Other than absolute value (Marhattan distance), may we use other distance form k?

Applications

Ingeconpression Document analysis Market segmentation

Further Topics

KMedoids Clustering Heardrical Clustering Hard/Soft Clustering Clustering with Otlies